Phase Shifting Interferometry algorithms performance characterization under random stepping errors.

CASIS 2016 May 18, 2016

Florin Munteanu

LLNL-PRES-692055

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Brief outlook

- Laser interferometry is a powerful technique:
 - based on phase estimation from successive measurements.
 - used:
 - at NIF by VISAR (Velocity Interferometer System for Any Reflector).
 - in industry for surface profiling
 - for stellar measurements (JPL).
- The accuracy depends on the precise positioning for data collection.
- Many parallel algorithms were developed to compensate for systematic positioning errors (bias), but no global characterization exists.
- A new quality measure for algorithms with <u>equivalent bias</u> performance and additional random stepping errors is suggested.

Optical interferometer – general principle

- The light from the source is split in two parts and sent on the object and on the reference mirror.
- The reflected beams are recombined.
- The recorded intensity depends upon the difference of the distances traveled by each beam -> constructive or destructive interference.

Phase shifting interferometry (PSI)

- Short scans, monochromatic light (λ).
- Frames are separated by an optical path difference (OPD) less than λ/2.

Distance measurement

 The recorded intensity by every CCD pixel is the combination of the reference "r" and object "o" beams.

$$I = I_o + I_r + 2\sqrt{I_o I_r} \sin\left[\frac{2\pi}{\lambda}(z_r - z_o)\right]$$

The reference (or object) position is varied in equal steps (Δ).

$$z_r^{(n)} = z_r^{(0)} + n\Delta$$

The intensity at every position "n" is given by:

$$I_n = I_o + I_r + 2\sqrt{I_o I_r} sin \left[\frac{2\pi}{\lambda} (n\Delta) + \frac{2\pi}{\lambda} (z_r^{(0)} - z_o) \right]$$
$$\equiv A + B \sin(\omega_0 n + \phi)$$

Distance measurement is a problem of phase detection.

Algorithms for phase detection

- A very large number designed to account for systematic stepping errors.
- Aim to determine a set of {a_n,b_n} coefficients such that:

$$\tan(\phi) = \frac{\sum_{n} a_n I_n}{\sum_{n} b_n I_n} = \frac{\sum_{n} a_n \left[A + B \sin(\omega_0 n + \phi) \right]}{\sum_{n} b_n \left[A + B \sin(\omega_0 n + \phi) \right]}$$

Necessary conditions:

$$\sum_{n} a_n = \sum_{n} b_n = 0$$

$$\frac{\sum_{n} a_n \sin(\omega_0 n + \phi)}{\sum_{n} b_n \sin(\omega_0 n + \phi)} = \frac{\sin(\phi + \zeta)}{\cos(\phi + \zeta)}$$

Additional conditions can be imposed to compensate systematic uncertainties in ω.

Effects of stepping errors.

• Variations in steps (ω_0 -> ω_0 + δ) lead to errors in the measured phase (Bias).

$$\tan(\Delta\phi) = -\frac{r\sin(2\phi)}{1 + r\cos(2\phi)}$$

One frame from a flat mirror.

Recovered profile of a flat mirror.

Compensation of step errors – general.

 Specific errors are being addressed by using Fourier approach. Start by correlating the recorded signal I(z) with two unknown functions (f₁,f₂):

$$I(z) = \sum_{n=0}^{\infty} V_n cos(n\omega_0 z + \phi_n)$$

$$\begin{cases} p(z) = I(z) \oplus f_1(z) = \int_{-\infty}^{\infty} I(\zeta) f_1(z + \zeta) d\zeta \\ q(z) = I(z) \oplus f_1(z) = \int_{-\infty}^{\infty} I(\zeta) f_2(z + \zeta) d\zeta \end{cases}$$

$$r = \frac{p(0)}{q(0)} = \frac{\sum_{n=0}^{\infty} V_n \left[e^{i\phi_n} F_1^*(n\omega_0) + e^{-i\phi_n} F_1^*(-n\omega_0) \right]}{\sum_{n=0}^{\infty} V_n \left[e^{i\phi_n} F_2^*(n\omega_0) + e^{-i\phi_n} F_2^*(-n\omega_0) \right]}$$

The phase corresponding to the frequency "m" can be retrieved from:

$$\tan(\phi_m) = r$$

if the following conditions are fulfilled:

$$F_1^*(n\omega_0) = F_2^*(n\omega_0) = 0, \qquad n \neq m$$

 $F_1^*(m\omega_0) = -iF_2^*(m\omega_0)$

Compensation of stepping errors – example.

$$f_1(z) = \sum_{k=0}^{N} a_k \delta(z - z_k)$$

$$f_2(z) = \sum_{k=0}^{N} b_k \delta(z - z_k)$$

Choose:
$$f_1(z) = \sum_{k=0}^{N} a_k \delta(z - z_k)$$

$$F_1^*(n\omega_0) = \sum_{k=0}^{N} a_k^* e^{i(n\omega_0)z_k}$$

$$f_2(z) = \sum_{k=0}^{N} b_k \delta(z - z_k)$$

$$F_2^*(n\omega_0) = \sum_{k=0}^{N} b_k^* e^{i(n\omega_0)z_k}$$

$$F_2^*(n\omega_0) = \sum_{k=0}^{N} b_k^* e^{i(n\omega_0)z_k}$$

Then the phase can be recovered from:

$$r = \frac{\sum_{k=0}^{N} a_k I(z_k)}{\sum_{k=0}^{N} b_k I(z_k)}$$

A linear error in stepping corresponds to:

$$\omega_0 \to \omega_0 + \delta$$

In the case when the error is small:

$$F_1^*(n\omega_0) = \sum_{k=0}^{N} a_k^* e^{i(n\omega_0)z_k} [1 + (inz_k)\delta]$$

$$F_2^*(n\omega_0) = \sum_{k=0}^{N} b_k^* e^{i(n\omega_0)z_k} [1 + (inz_k)\delta]$$

a set of additional equations for $\{a_n,b_n\}$ necessary to cancel (δ) can be derived.

Algorithm performance characterization.

- A very large number of algorithms have been derived.
- Their performance is currently estimated by the size of the phase error (bias) calculated from synthetic data with specific sampling errors.
- As of now, no way of characterizing algorithms with equivalent bias performance exists.

$$MSE(\hat{\phi}) \equiv E\left[(\hat{\phi} - \phi)^2\right] = \left[Bias(\hat{\phi}, \phi)\right]^2 + Var(\hat{\phi})$$

- We suggest as a measure for the global performance the magnitude of the phase variance Var[Φ] in the presence of completely random stepping errors.
- Critical assumption: Correct steps -> Correct phase determination! (zero bias)

Stochastic analysis.

Each data point in the signal is given by:

$$I_k = A + B\sin(k\Delta + \alpha_k + \phi) + \epsilon_k$$

$$\begin{split} E[\alpha_k] &= \mu_\alpha \quad E[\epsilon_k] = 0 \\ Cov[\alpha_k, \alpha_j] &= \sigma_\alpha^2 \delta_{k,j} \quad Cov[\epsilon_k, \epsilon_j] = \sigma_\epsilon^2 \delta_{k,j} \quad Cov(\alpha_k, \epsilon_j) = 0 \end{split}$$

Phase estimator:
$$\hat{\phi} = \arctan\left[\frac{\sum_{i=1}^{N} a_i I_i}{\sum_{j=1}^{N} b_j I_j}\right] - \zeta$$

First order error propagation:

$$\mu_{\hat{\phi}} = E[\hat{\phi}] = E\left[\frac{\sum_{i=1}^{N} a_{i} I_{i}}{\sum_{j=1}^{N} b_{j} I_{j}}\right] \approx \frac{\sum_{i=1}^{N} a_{i} E[I_{i}]}{\sum_{j=1}^{N} b_{j} E[I_{j}]}\Big|_{\hat{\phi} = \phi}$$

$$\sigma_{\hat{\phi}}^{2} = V[\hat{\phi}] \approx \sigma_{\alpha}^{2} \sum_{k=1}^{N} \left[\frac{\partial \hat{\phi}}{\partial \alpha_{k}}\right]_{\hat{\phi} = \phi}^{2} + \sigma_{\epsilon}^{2} \sum_{k=1}^{N} \left[\frac{\partial \hat{\phi}}{\partial \epsilon_{k}}\right]_{\hat{\phi} = \phi}^{2}$$

Proposed estimator.

Expected phase variance due to random step errors:

$$E_{\phi}^{step} \left[Var(\hat{\phi}) \right] = \sigma_{\alpha}^{2} \left[\frac{1}{4(S_{a}^{2} + S_{b}^{2})} \sum_{k=1}^{N} \left\{ -a_{k}b_{k}\cos(2k\Delta) + \frac{a_{k}^{2} - b_{k}^{2}}{2}\sin(2k\Delta) \right] + \cos(2\zeta) \left[a_{k}b_{k}\sin(2k\Delta) + \frac{a_{k}^{2} - b_{k}^{2}}{2}\cos(2k\Delta) \right] \right\} \right]$$

Proposed measure for algorithm performance:

$$T(a_k, b_k, \Delta) \equiv \frac{1}{4(S_a^2 + S_b^2)} \sum_{k=1}^{N} \left\{ \begin{aligned} &(a_k^2 + b_k^2) \\ +\sin(2\zeta) \left[-a_k b_k \cos(2k\Delta) + \frac{a_k^2 - b_k^2}{2} \sin(2k\Delta) \right] \\ &+\cos(2\zeta) \left[a_k b_k \sin(2k\Delta) + \frac{a_k^2 - b_k^2}{2} \cos(2k\Delta) \right] \end{aligned} \right\}$$

$$S_a \equiv \sum_{k=1}^{N} a_k \sin(k\Delta)$$
 $S_b \equiv \sum_{k=1}^{N} b_k \sin(k\Delta)$

$$C_a \equiv \sum_{k=1}^{N} a_k \cos(k\Delta)$$
 $C_b \equiv \sum_{k=1}^{N} b_k \cos(k\Delta)$

Synthetic data results.

 Four algorithms were compared

		Algorithm coefficients				
Name	No. frames	a	b			
A	5	{0, -2, 0, 2, 0}	{1, 0, -2, 0, 1}			
В	7	{0.5, 0, -1.5, 0, 1.5, 0, -0.5}	{0, 1, 0, -2, 0, 1, 0}			
C	7	{1, 0, -7, 0, 7, 0, -1}	{0, 4, 0, -8, 0, 4, 0}			
D	8	{1, -5, -11, 15, 15, -11, -5, 1}	{1, 5, -11, -15, 15, 11, -5, -1}			

 Error (%) between the proposed formula and MC simulation with the size of the step error interval (in degrees).

Synthetic data results.

 Predicted (red line) and MC variances (blue dots) as function of signal phase.

• Step error interval = $\pi/10$

Synthetic data results.

 Predicted (red line) and MC variances (blue dots) as function of signal phase.

• Step error interval = $\pi/4$

Algorithm performance comparison.

No systematic error present.

Alg	No. frames (N)	$T(a_k, b_k, \Delta)$	$U(a_k, b_k, \Delta)$	$N \times T$	$N \times U$
A	5	0.328	0.437	1.64	2.187
В	7	0.258	0.344	1.80	2.41
С	7	0.287	0.383	2.01	2.68
D	8	0.272	0.363	2.18	2.91

Linear mis-calibration step of 40 deg.

Alg	No. frames (N)	$T(a_k, b_k, \Delta)$	$U(a_k,b_k,\Delta)$	$N \times T$	$N \times U$
A	5	0.467	0.831	2.33	4.16
В	7	0.879	1.572	6.15	11.00
C	7	0.589	1.045	4.12	7.31
D	8	0.645	1.153	5.16	9.22

Conclusion.

- Selection of phase detection algorithm must be done based on:
 - Presence of known systematic errors.
 - Bias compensation performance.
 - Stochastic performance.

